Солнечная активность

Солнечная активность – это совокупность явлений, периодически возникающих в солнечной атмосфере. Проявления солнечной активности связаны с магнитными свойствами солнечной плазмы.

Что же вызывает возникновение солнечной активности? Постепенно увеличивается магнитный поток в одной из областей фотосферы. Затем здесь увеличивается яркость в линиях водорода и кальция. Такие области называются флоккулами.

Солнечные флоккулы

Примерно в тех же участках на Солнце в фотосфере (т.е. несколько глубже) при этом также наблюдается увеличение яркости в белом (видимом) свете. Это явление называется факелами.

Солнечные факелы

Увеличение энергии, выделяющееся в области факела и флоккула – следствие увеличившейся напряженности магнитного поля.
Через 1-2 дня после появления флоккула в активной области возникают солнечные пятна в виде маленьких черных точек – пор. Многие из них вскоре исчезают, лишь отдельные поры за 2-3 дня превращаются в крупные темные образования. Типичное солнечное пятно имеет размеры в несколько десятков тысяч километров и состоит из темной центральной части (тени) и волокнистой полутени.

Из истории изучения солнечных пятен

Первые сообщения о пятнах на Солнце относятся к наблюдениям 800 г. до н. э. в Китае, первые рисунки относятся к 1128 г. В 1610 г. астрономы начали использовать телескоп для наблюдения Солнца. Первоначальные исследования касались в основном природы пятен и их поведения. Но, несмотря на исследования, физическая природа пятен оставалась неясной до XX века. К XIX веку уже имелся достаточно продолжительный ряд наблюдений числа пятен, чтобы определить периодические циклы в активности Солнца. В 1845 г. профессора Д. Генри и С. Александер из Принстонского университета наблюдали Солнце с помощью термометра и определили, что пятна излучают меньше радиации по сравнению с окружающими областями Солнца. Позже было определено излучение выше среднего в областях факелов.

Характеристика солнечных пятен

Солнечные пятна

Самая главная особенность пятен – наличие в них сильных магнитных полей, достигающих наибольшей напряженности в области тени. Представьте себе выходящую в фотосферу трубку силовых линий магнитного поля. Верхняя часть трубки расширяется, и силовые линии в ней расходятся, как колосья в снопе. Поэтому вокруг тени магнитные силовые линии принимают направление, близкое к горизонтальному. Магнитное поле как бы расширяет пятно изнутри и подавляет конвективные движения газа, переносящие энергию из глубины вверх. Поэтому в области пятна температура оказывается меньше примерно на 1000 К. Пятно является как бы охлажденной и скованной магнитным полем ямой в солнечной фотосфере.
Чаще всего пятна возникают целыми группами, но в них выделяются два больших пятна. Одно, небольшое, — на западе, а другое, поменьше, — на востоке. Вокруг них и между ними часто бывает множество мелких пятен. Такая группа пятен называется биполярной, потому что у больших пятен всегда противоположная полярность магнитного поля. Они как бы связаны с одной и той же трубкой силовых линий магнитного поля, которая в виде гигантской петли вынырнула из-под фотосферы, оставив концы где-то в глубоких слоях, увидеть их невозможно. Пятно, из которого выходит магнитное поле из фотосферы, имеет северную полярность, а то, в которое силовое поле входит обратно под фотосферу – южную.

Солнечные вспышки

Солнечные вспышки

Солнечные вспышки – самое мощное проявление солнечной активности. Они происходят в сравнительно небольших областях хромосферы и короны, расположенных над группами солнечных пятен. Проще говоря, вспышки – это взрыв, вызванный внезапным сжатием солнечной плазмы. Сжатие происходит под давлением магнитного поля и приводит к образованию длинного плазменного жгута в десятки и даже сотни тысяч километров. Количество энергии взрыва – от 10²³ Дж. Источник энергии вспышек отличается от источника энергии всего Солнца. Ясно, что вспышки имеют электромагнитную природу. Энергия, излучаемая вспышкой в коротковолновой области спектра, состоит из ультрафиолетовых и рентгеновских лучей.
Как и всякий сильный взрыв, вспышка порождает ударную волну, которая распространяется вверх в корону и вдоль поверхностных слоев солнечной атмосферы. Излучение солнечных вспышек оказывает особенно сильное воздействие на верхние слои земной атмосферы и ионосферу. В результате этого происходит целый комплекс геофизических явлений на Земле.

Протуберанцы

Наиболее грандиозными образованиями в солнечной атмосфере являются протуберанцы. Это плотные облака газов, возникающие в солнечной короне или выбрасываемые в нее из хромосферы. Типичный протуберанец имеет вид гигантской светящейся арки, опирающейся на хромосферу и образованной струями и потоками более плотного, чем корона, вещества. Температура протуберанцев около 20 000 К. Некоторые из них существуют в короне несколько месяцев, другие, появляющиеся рядом с пятнами, быстро движутся со скоростями около 100 км/с и существуют несколько недель. Отдельные протуберанцы движутся с еще большими скоростями и внезапно взрываются; они называются эруптивными. Размеры протуберанцев могут быть разными. Типичный протуберанец имеет высоту около 40 000 км и ширину около 200 000 км.
Имеется множество типов протуберанцев. На фотографиях хромосферы в красной спектральной линии водорода протуберанцы хорошо видны на диске Солнца в виде темных длинных волокон.

Солнечная активность

Области на Солнце, в которых наблюдаются интенсивные проявления солнечной активности, называются центрами солнечной активности. Общая активность Солнца периодически меняется. Существует множество способов оценивать уровень солнечной активности. Индекс солнечной активности – числа Вольфа W. W= k (f+10g), где k – коэффициент, учитывающий качество инструмента и производимых с его помощью наблюдений, f – полное число пятен, наблюдаемых в данный момент на Солнце, g – удесятеренное число групп, которые они образуют.
Эпоху, когда количество центров активности наибольшее, считают максимумом солнечной активности. А когда их совсем или почти нет – минимумом. Максимумы и минимумы чередуются в среднем с периодом 11 лет – одиннадцатилетний цикл солнечной активности.

Влияние солнечной активности на жизнь на Земле

Влияние это очень велико. Первым это влияние начал исследовать А. Л. Чижевский в июне 1915 г. Северные полярные сияния наблюдались в России и даже в Северной Америке, а «магнитные бури непрерывно нарушали движение телеграмм». В этот период ученый обращает внимание на то, что повышенная солнечная активность совпадает с кровопролитием на Земле. И действительно, сразу после появления больших пятен на Солнце на многих фронтах Первой мировой усилились военные действия. Он посвятил этим исследованиям всю свою жизнь, но его книга «В ритме Солнца» осталась недописанной и вышла только в 1969 г., через 4 года после смерти Чижевского. Он обратил внимание на связь между увеличением солнечной активности и земными катаклизмами.
Поворачиваясь к Солнцу то одним, то другим своим полушарием, Земля получает энергию. Этот поток можно представить в виде бегущей волны: там, где падает свет — ее гребень, где темно – провал: энергия то прибывает, то убывает.
Магнитные поля и потоки частиц, которые идут от солнечных пятен, достигают Земли и влияют на мозг, сердечно-сосудистую и кровеносную системы человека, на его физическое, нервное и психологическое состояние. Высокий уровень солнечной активности, его быстрые изменения возбуждают человека.

Взаимодействие Солнца и Земли

Сейчас влияние солнечной активности на Землю изучается очень активно. Появились новые науки — гелиобиология, солнечно-земная физика, — которые исследуют взаимосвязь жизни на Земле, погоды, климата с проявлениями солнечной активности.
Астрономы говорят, что Солнце становится все более ярким и жарким. Это связано с тем, что за последние 90 лет активность его магнитного поля увеличилась более чем вдвое, причем наибольший рост произошел за последние 30 лет. Сейчас ученые могут предсказывать солнечные вспышки, что дает возможность заблаговременно подготовиться к возможным сбоям в работе радио- и электросетей.

А.Л. Чижевский

Сильная солнечная активность может привести к тому, что на Земле выйдут из строя линии электропередач, изменятся орбиты спутников, которые обеспечивают работу систем связи, «направляют» самолеты и океанские лайнеры. Солнечное «буйство» обычно характеризуется мощными вспышками и появлением множества пятен. Чижевский установил, что в период повышенной солнечной активности (большого количества пятен на Солнце) на Земле происходят войны, революции, стихийные бедствия, катастрофы, эпидемии, увеличивается интенсивность роста бактерий («эффект Чижевского — Вельховера»). Вот что он пишет в своей книге «Земное эхо солнечных бурь»: «Бесконечно велико количество и бесконечно разнообразно качество физико-химических факторов окружающей нас со всех сторон среды — природы. Мощные взаимодействующие силы исходят из космического пространства. Солнце, Луна, планеты и бесконечное число небесных тел связаны с Землею невидимыми узами. Движение Земли управляется силами тяготения, которые вызывают в воздушной, жидкой и твердой оболочках нашей планеты ряд деформаций, заставляют их пульсировать, производят приливы. Положение планет в солнечной системе влияет на распределение и напряженность электрических и магнитных сил Земли.
Но наибольшее влияние на физическую и органическую жизнь Земли оказывают радиации, направляющиеся к Земле со всех сторон Вселенной. Они связывают наружные части Земли непосредственно с космической средой, роднят ее с нею, постоянно взаимодействуют с нею, а потому и наружный лик Земли, и жизнь, наполняющая его, являются результатом творческого воздействия космических сил. А потому и строение земной оболочки, ее физико-химия и биосфера являются проявлением строения и механики Вселенной, а не случайной игрой местных сил. Наука бесконечно широко раздвигает границы нашего непосредственного восприятия природы и нашего мироощущения. Не Земля, а космические просторы становятся нашей родиной, и мы начинаем ощущать во всем ее подлинном величии значительность для всего земного бытия и перемещения отдаленных небесных тел, и движения их посланников — радиации…»
В 1980 году появилась методика, позволяющая обнаруживать наличие пятен в фотосферах других звезд. Оказалось, что у многих звезд спектрального класса G и К есть пятна, сходные с солнечными, с магнитным полем того же порядка. Зарегистрированы и изучаются циклы активности таких звезд. Они близки к солнечному циклу и составляют 5 — 10 лет.

Существуют гипотезы о влиянии изменений физических параметров Солнца на климат Земли.

Земные полярные сияния являются видимым результатом взаимодействия солнечного ветра, солнечной и земной магнитосфер и атмосферы. Экстремальные явления, связанные с солнечной активностью, приводят к значительным возмущениям магнитного поля Земли, что становится причиной геомагнитных бурь. Геомагнитные бури являются одним из важнейших элементов космической погоды и влияют на многие области деятельности человека, из которых можно выделить нарушение связи, систем навигации космических кораблей, возникновения вихревых индукционных токов в трансформаторах и трубопроводах и даже разрушение энергетических систем.
Магнитные бури также влияют на здоровье и самочувствие людей. Раздел биофизики, изучающий влияние изменений активности Солнца и вызываемых ею в земной магнитосфере возмущений на земные организмы, называется гелиобиологией.

* * *

Солнце – центральное тело Солнечной системы. Оно представляет собой очень горячий плазменный шар.

Солнце – ближайшая к Земле звезда. Свет от него доходит до нас за 8 ⅓ мин. Благодаря Солнцу образовались все тела Солнечной системы и создались условия для возникновения и развития жизни на Земле.

Гипотеза возникновения Солнца

Ученые предполагают, что Солнце возникло вместе с другими телами Солнечной системы из газопылевой туманности примерно 5 млрд. лет назад. Сначала вещество Солнца сильно разогревалось из-за гравитационного сжатия, но затем температура и давление в недрах Солнца настолько увеличились, что самопроизвольно начали происходить ядерные реакции. В результате резко поднялась температура в центре Солнца, а давление в его недрах возросло настолько, что смогло уравновесить силу тяжести и остановить гравитационное сжатие. Так возникла современная структура Солнца. Эта структура поддерживается происходящим в его недрах медленным превращением водорода в гелий. За время существования Солнца уже около половины водорода в его центральной области превратилось в гелий. В результате этого процесса выделяется то количество энергии, которое Солнце излучает в мировое пространство.
У Солнца огромная мощность излучения: 3,8∙10²° МВт. На Землю попадает только ничтожная часть солнечной энергии, лишь половина миллиардной доли. Она поддерживает в газообразном состоянии земную атмосферу, постоянно нагревает сушу и водоемы, дает энергию ветрам и водопадам, обеспечивает жизнь животным и растениям. Часть солнечной энергии хранится в недрах Земли в виде каменного угля, нефти и других полезных ископаемых. Средний диаметр Солнца составляет 109 диаметров Земли (1 392 000 км).

Строение Солнца

Солнце представляет собой сферически симметричное тело, находящееся в равновесии. Физические условия одинаковы на одинаковых расстояниях от центра, но они заметно меняются по мере приближения к центру. Чем больше вглубь, тем плотность и давление нарастают, сжатые давлением вышележащих слоев. Солнце можно разделить на несколько концентрических слоев, постепенно переходящих друг в друга.

Строение Солнца

В центре Солнца огромная температура: 15 млн. градусов! Давление превышает сотни миллиардов атмосфер. Сжатие газа тоже огромной плотности. Почти вся энергия Солнца генерируется в центральной части (ядре) с радиусом примерно в ⅓ солнечного. Через окружающие слои эта энергия передается наружу. На протяжении последней трети радиуса находится конвективная зона. Что такое конвекция, вам легче будет понять, если обратиться к кипящему чайнику: количество энергии для нагревания гораздо больше той, которая отводится теплопроводностью.

Конвекция

Поэтому вещество приходит в движение и начинает само переносить тепло. Вы можете спросить, как же можно было об этом узнать при таких характеристиках Солнца? Да, указанные слои Солнца наблюдать невозможно. Об их существовании мы знаем либо из теоретических расчетов, либо на основании косвенных данных.
Над конвективной находятся уже видимые слои Солнца, т.е. его атмосфера. Эти слои изучены лучше, об их свойствах можно судить из наблюдений.

Солнечная атмосфера

Атмосфера Солнца также состоит из нескольких различных слоев. Самый глубокий и тонкий из них –фотосфера, наблюдаемая в видимом непрерывном спектре. Ее толщина всего 300 км. Чем глубже слои фотосферы, тем они горячее.
В телескоп можно увидеть характерную зернистую структуру фотосферы. Это впечатление зернистости создают чередования маленьких светлых пятнышек (гранул) размером около 1000 км, окруженных темными промежутками. Возникновение грануляций связано с происходящей под фотосферой конвекцией. Отдельные гранулы намного горячее окружающего их газа. В течение нескольких минут их распределение по диску Солнца меняется. В гранулах происходит движение газа, похожее на конвективное. Возникшие в конвективной зоне и фотосфере волны нагревают газы в последующих слоях атмосферы Солнца –хромосфере и короне. Поэтому верхние слои фотосферы – самые «холодные» на Солнце, их температура около 4500 К. Слой хромосферы во время полного солнечного затмения, когда Луна полностью закрывает фотосферу, виден в виде розового кольца, окружающего диск. На краю хромосферы видны как бы выступающие язычки пламени – хромосферные спикулы. Тогда же можно наблюдать и спектр вспышки, который состоит из водорода, гелия, ионизированного кальция и других элементов.
Чем отличается хромосфера от фотосферы? Более неправильной неоднородной структурой. Температура в хромосфере быстро растет и в верхних слоях достигает десятков тысяч градусов.
Самая внешняя и разреженная часть солнечной атмосферы – корона.

Солнечная корона

Температура ее – около миллиона градусов. Корону можно видеть только во время полного солнечного затмения либо с помощью коронографа.
Вся солнечная атмосфера постоянно колеблется волнами длиной в несколько тысяч километров. Период колебаний – около 5 минут.

Солнечные магнитные поля

На Солнце все вещество представлено в виде намагниченной плазмы. Периодически в отдельных областях она скапливается в большем количестве, тогда говорят о солнечной активности: факелы, пятна, протуберанцы — плотные конденсации относительно холодного (по сравнению с солнечной короной) вещества, которые поднимаются и удерживаются над поверхностью Солнца магнитным полем в короне. Все слои солнечной атмосферы захватывают солнечные вспышки.

Солнечный протуберанец

Солнечное радиоизлучение

Солнце – мощный источник радиоизлучения. Сантиметровые волны излучает хромосфера, дециметровые и метровые – корона. Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и миллионы раз по сравнению со спокойным «поведением» Солнца.

Рентгеновские лучи Солнца

Они исходят в основном от верхних слоев хромосферы и короны. В годы максимальной солнечной активности бывает особенно сильное излучение.

Другие виды солнечного излучения

Солнечный ветер

Солнце является также источником постоянного потока частиц: нейтрино, электронов, протонов, альфа-частиц – корпускулярное излучение Солнца. Значительная часть этого излучения – поток плазмы (солнечный ветер), являющийся продолжением солнечной короны. Он дует постоянно и в результате отдельные области на Солнце являются источниками корпускулярных потоков. С солнечными вспышками связаны и космические лучи – частицы с большими энергиями.

 * * *